Our crosses were made between inbred Cannabis sativa plants with pure cannabidiol (CBD) and pure Δ-9-tetrahydrocannabinol (THC) chemotypes. All the plants belonging to the F1’s were analyzed by gas chromatography for cannabinoid composition and constantly found to have a mixed CBD-THC chemotype. Ten individual F1 plants were self-fertilized, and 10 inbred F2 offspring were collected and analyzed. In all cases, a segregation of the three chemotypes (pure CBD, mixed CBD-THC, and pure THC) fitting a 1:2:1 proportion was observed. The CBD/THC ratio was found to be significantly progeny specific and transmitted from each F1 to the F2’s derived from it. A model involving one locus, B, with two alleles, BD and BT, is proposed, with the two alleles being codominant. The mixed chemotypes are interpreted as due to the genotype BD/BT at the B locus, while the pure-chemotype plants are due to homozygosity at the B locus (either BD/BD or BT/BT). It is suggested that such codominance is due to the codification by the two alleles for different isoforms of the same synthase, having different specificity for the conversion of the common precursor cannabigerol into CBD or THC, respectively. The F2 segregating groups were used in a bulk segregant analysis of the pooled DNAs for screening RAPD primers; three chemotype-associated markers are described, one of which has been transformed in a sequence-characterized amplified region (SCAR) marker and shows tight linkage to the chemotype and codominance.
The Inheritance of Chemical Phenotype in Cannabis sativa L.
24
Jan